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 Abstract 
Hepatitis B and C (HBV, HCV) are major global contributors to liver 
disease and often lead to cirrhosis. This study explored shared genetic 
features linking HBV/HCV infections to cirrhosis using a network-based 
analysis of gene expression data. Transcriptomic profiles from GEO 
datasets (GSE121248, GSE55092, GSE89377, GSE139602) were 
integrated, identifying 47 commonly upregulated genes associated with 
disease progression. Functional enrichment and pathway analysis were 
conducted using R, while a protein-protein interaction (PPI) network was 
constructed via the STRING plugin in Cytoscape. Ten hub genes 
(CDC20, CCNB2, MELK, AURKA, PRC1, TOP2A, CDCA5, 
PTTG1, TYMS, UBE2C) were identified as key modulators. Additional 
interaction networks—TF–miRNA and drug–gene—were developed using 
NetworkAnalyst. This systems biology approach highlights the molecular 
complexity underlying hepatitis-related cirrhosis and identifies candidate 
genes for potential therapeutic targeting, pending further validation. 
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INTRODUCTION 
Hepatitis B and C viruses, or HBV and HCV, are a 
global public health emergency because they cause an 
alarming increase in the incidence of liver diseases, 
especially cirrhosis (Te and Jensen 2010).   Liver 
scarring is a hallmark of cirrhosis, which may cause 
fatal complications such hepatocellular carcinoma 
and liver failure (Schuppan and Afdhal 2008).   
Researchers must dig deep into the origins of HBV 
and HCV infections and the progression of chronic 
liver disease because these viruses affect millions of 
people annually.   The goal of this study is to get a 
better understanding of the genetic relationships 
between cirrhosis, hepatitis B and C virus (HBV) 
infection and HCV and HCV infection.   In 
accordance with Breunig and Zlatanova (2011), we 
searched the Gene Expression Omnibus (GEO) 

database for gene expression datasets using a network-
based approach.   Liver tissues with infections or 
cirrhosis were analysed using four datasets: 
GSE121248, GSE55092, GSE89377 and 
GSE139602.  
This research brought together various disease 
progression datasets to discover shared genes that the 
body activates during the disease process (Song, Su et 
al. 2019). They studied gene expression data to 
recognize how viral hepatitis leads to cirrhosis. 
Research proves that several internal actions exist 
between genetic signals and disease development 
because multiple health problems share the same 
genetic source. The research analysis identifies 47 
genes that indicate increased activity. These crucial 
genes support important biological tasks like cell 
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control and immune response plus they act in 
inflammatory and scarring processes (Iizuka, Oka et 
al. 2003). Our next step must be to study these 
biological pathways because they show how liver tissue 
damage at the end leads to cirrhosis during viral 
infections.  
The researchers further elucidated these gene 
relationships by using the R package to investigate the 
related pathways and gene ontologies (Petri, 
Jayaraman, et al. 2014). Insights were gained from this 
analysis into how certain genes will interact in 
biological networks and also how dysregulation of 
genes in specific patterns will further lead to disease 
progression. However, one of the significant 
improvements was in building a protein–protein 
interaction (PPI) network with the help of the 
STRING Cytoscape plugin (Menon and Elengoe 
2020). The identified genes are networked to visualize 
their interactions in terms of proteins encoded by 
them and to find hub genes, meaning these genes are 
very highly connected within that network and so 
again should play crucial roles in disease processes.  
From this PPI network, ten hub genes were CDC20, 
CCNB2, MELK, AURKA, PRC1, TOP2A, CDCA5, 
PTTG1, TYMS and UBE2C. It was found that these 
genes were crucial in regulating functions of the cell 
such as the cell cycle and DNA repair. Given that their 
upregulation was observed for both HBV and HCV 
infections, they have possible roles in the 
development of cirrhosis (Shackel, McGuinness et al. 
2002). The identification of these hub genes will pave 
the way for the future research on these genes and 
therapeutic interventions if feasible. Targeting these 
key genes, it may be possible to come up with 
strategies to stop or reverse progression of liver disease 
in chronic HBV or HCV patients. The research 
emphasizes that an approach of systems biology, 
wherein the interactions among the biological system 
elements are taken into consideration rather than 
concentrating on single genes or pathways, is 
required.  
The study also developed interaction networks of 
transcription factors (TFs), TFsmiRNA and drug 
interactions in the NetworkAnalyst platform (Basar, 
Hosen et al. 2023). This full analysis expands our 
perception of the regulatory networks formed in gene 
expression during hepatitis and cirrhosis. In detail, 
this research breaks Hepatitis B/C infections and 

cirrhosis down to a fine network based gene 
expression platform analysis uncovering the shared 
genetic aspects between these two disease conditions.   
 
Material and Methods 
2.1. Acquisition of datasets   
Microarray gene expression profiles for cirrhosis 
(GSE89377 & GSE139602) and hepatitis B/C 
(GSE55092) were obtained from the Gene Expression 
Omnibus (GEO).   
(https://www.ncbi.nlm.nih.gov/gds). Both databases 
centre on peripheral blood cells.  The datasets 
GSE121248 and GSE55092 were processed using the 
GPL26963 platform.  The sample pool consisted of 
10 people: 5 with mild cirrhosis, 5 with severe 
hepatitis B/C and 5 healthy controls.  A human 
lncRNA V5 microarray, model 085982, 
manufactured by Agilent, serves as the foundation.   
The GPL570 (Affymetrix Human Genome U133 plus 
2.0 Array) platform was used to collect samples for the 
GSE18781 dataset from twelve persons with cirrhosis 
and twelve healthy controls. 
 
2.2. Identification of common upregulated genes  
To find shared differentially expressed genes (DEGs) 
across the two sets of data, GEO2R  
https://www.ncbi.nlm.nih.gov/geo/geo2r/ was 
done.   According to Sui, Li et al. (2023), GEO2R can 
identify DEGs by comparing several datasets and then 
using the GEOquery and limma R tools developed by 
the Bioconductor project.   According to Ferreira and 
Zwinderman (2006), the false discovery rate was 
limited using Benjamini-Hochberg.   Once received 
via GEO2R in table format, the shared DEGs from 
both datasets were imported into RStudio for further 
analysis.   Filtering datasets was done by setting 
adjusted p-values to less than 0.01 and log2-fold 
changes to less than -1.   A Venn diagram was created 
using Bioinformatics and Evolutionary Genomics.  
http://bioinformatics.psb.ugent.be/webtools/Venn/
web-based instrument and then to get often elevated 
genes.  
 
2.3. Enrichment analysis of common upregulated 
genes  
One way to evaluate the collective behaviours of genes 
in connection to health and disease is via gene set 
enrichment analysis, which was described by Hong, 

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Zhang et al. (2014).   For genes that were raised often, 
Enrichr was used to get gene ontologies (GO) and 
associated pathways.  
(https://maayanlab.cloud/Enrichr/).  
Khan, Dębski and colleagues (2016) state that Enrichr 
has several collective gene list features and is an easy-
to-use web-based application for enrichment analysis.   
For pathways analysis, KEGG, BioPlanet, Reactome 
and MSigDB were used. 
  
2.4. Network analysis  
An essential part of system biology is network analysis, 
which helps us understand how proteins interact at 
the cellular and molecular levels (Hevey 2018).   
Research focused on networks, as opposed to 
individual genes, may also teach us a lot about gene 
sets.   Our network construction tool of choice was the 
STRING protein quarry Cytoscape plugin.   Gene 
interaction searches may be conducted in the 
STRING database. (https://string-db.org/)Used to 
describe the physical and functional links between 
proteins across more than 2000 species.   With a 
confidence level of 0.400, we typed upregulated genes 
into the search box.   We used Cytoscape and its 
associated plugin tools for viewing and customisation 
after the network retrieval (Smoot, Ono et al., 2011).  
 
2.5. Hub genes identification and module analysis  
In a network, there are several kinds of nodes and 
edges; genes with the most connections are known as 
hub genes.   In many cases, the upkeep of biological 
activities depends on hub genes, which are more 
strongly connected.   Our PPI network hub genes were 
located using cytoHubba, a Cytoscape plugin 
software.   An easy-to-use program that provides eleven 
topological analysis methods for investigating critical 
nodes in biological networks is CytoHubba, claims 
Chin, Chen and colleagues (2014).   This research 
made use of the degree topological method, which is 
based on the number of interactions between genes in 
the PPIs network.   An additional Cytoscape plugin 
tool called Molecular Complex Detection (MCODE) 
was used to identify the tightly related parts of the PPIs 
network.   Xu and Hejzlar (2008) state that MCODE 
streamlines visualisation by eliminating dense regions 
around a protein of interest.  
 

2.6. Transcriptional factor regulatory network of 
hub genes  
The transcription factor (TF) network is crucial for 
cell fate choices in mammals and for maintaining 
tissue homeostasis in adults, although it is often 
disrupted by illness (Lindemose, O’Shea et al. 2013).   
Using NetworkAnalyst, we built the network of 
interactions between hub genes and 
TFs.(https://www.networkanalyst.ca/NetworkAnalys
t/uploads/ListUploadView.xht).  
The comprehensive web-based platform 
NetworkAnalyst offers a visual network for the 
investigation of gene expression (Zhou, Soufan et al. 
2019).   To draw up the TFs gene interaction network, 
the JASPAR database was used. 
(http://jaspar.genereg.net/) which is included in 
NetworkAnalyst platform.  
 
2.7. TFs-miRNA regulatory network analysis  
According to Rad, Langroudi et al. (2015), TFs 
control transcription before it happens, while 
microRNAs control gene expression after 
transcription has already occurred.   The TFsmiRNA 
regulatory network for hub genes was constructed 
using the RegNetwork repository and the 
NetworkAnalyst tool (Liu, Wu et al. 2015).   A filter 
was applied to the network at the 1° cutoff level.   
Finally, the network that had been obtained from 
NetworkAnalyst was seen in Cytoscape.  
 
2.8. Protein drug interaction network  
We concluded by creating a drug interaction network 
for our hub genes to help find potential drugs for 
cirrhosis and hepatitis B/C. The network was built 
using DrugBank.(https://go.drugbank.com/)dataset 
using the web-based tool NetworkAnalyst (Knox, 
Wilson et al., 2024).   Once the network file was 
retrieved from NetworkAnalyst, Cytoscape was used 
to display it.  
 
Results  
3.1. Identification of common upregulated genes 
between Hepatitis B/C and Cirrhosis:  
We looked at two datasets, GSE121248 and 
GSE55092 and GSE89377 and GSE139602, to find 
common elevated genes between cirrhosis patients 
and hepatitis B/C patients.    We were able to extract 
47 frequently upregulated genes from these datasets.  

https://maayanlab.cloud/Enrichr/
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1. These common upregulated genes were 
included as GPC3, SPINK1, AKR1B10, TOP2A, 
ACSL4, ASPM, CDKN3, SULT1C2, PRC1, SPP1, 
CD24, NQO1, CCNB2, S100P, CDC20, PTTG1, 
COL1A2, COL4A1, MELK, AURKA, LRRC1, 
DTNA, GMNN, UBE2C, THY1, AKR1C3, IFI27, 

TMEM45B, TYMS, MDK, FAT1, SORT1, IGSF3, 
ADGRG2, SLC51B, MUC13, CDCA5, S100A10, 
TGM3, FABP4, APOLD1, TSPAN8, C15orf48, 
PCOLCE2, CXCL10, GOLM1 and GPX2. The Venn 
diagram in Fig. 1indicates the comparison of common 
upregulated genes. 

Figure 1: Elevated and differentially expressed genes often   While 114 genes were discovered to be upregulated 
owing to cirrhosis and 1,160 genes were found to be upregulated due to hepatitis B/C infection, 47 genes were 

found to be elevated regardless of the cause. 
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Figure 2. 3D volcano graphs illustrating the location 
of 221 differentially expressed genes (DEGs) in 
hepatitis B/C in GSE121248 and GSE55092 and in 
222 cirrhosis in GSE89377 and GSE139602.   The 
green dots represent 223 upregulated genes, the red 
dots 223 downregulated genes and the black dots 
genes that remained unchanged. 
 
3.2. Enrichment analysis of common upregulated 
genes 
In order to evaluate the improved genes, the Enrichr 
platform was used to examine their GO and 

associated pathways.     Table 1 lists the ontologies 
from the three GO subsections 227 (cellular 
component, molecular function and biological 
process) that were determined to be significant (p < 
0.05).     The table lists 228 biological processes, 
including the cellular response to shear stress in 
laminar flows and the management of natural killer 
cells.     Additional molecular functions, including 
those of beta-galactoside (CMP) alpha-2,3-
sialyltransferases and transmembrane transporters, 
were also uncovered.     The zonula adherens and the 
t-cell receptor complex were also considered potential 
biological components. 

 
 
 
 
 

ID Description pvalue genes Count 
hsa04114 Oocyte meiosis 0.000510486 CCNB2/CDC20/PTTG1/AURKA 4 
hsa04512 ECM-receptor interaction 0.002037412 SPP1/COL1A2/COL4A1 3 
hsa00790 Folate biosynthesis 0.002542327 AKR1B10/AKR1C3 2 
hsa04110 Cell cycle 0.005745129 CCNB2/CDC20/PTTG1 3 
hsa03320 PPAR signaling pathway 0.019900349 ACSL4/FABP4 2 

hsa04510 Focal adhesion 0.020481174 SPP1/COL1A2/COL4A1 3 

hsa05166 Human T-cell leukemia virus 1 infection 0.02586964 CCNB2/CDC20/PTTG1 3 

hsa00130 Ubiquinone and other terpenoid-quinone 
biosynthesis 

0.031659609 NQO1 1 

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications 

0.033966036 COL1A2/COL4A1 2 

hsa04914 Progesterone-mediated oocyte maturation 0.035220997 CCNB2/AURKA 2 
hsa05146 Amoebiasis 0.035220997 COL1A2/COL4A1 2 
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hsa04974 Protein digestion and absorption 0.035855261 COL1A2/COL4A1 2 
hsa04620 Toll-like receptor signaling pathway 0.036494008 SPP1/CXCL10 2 
hsa00061 Fatty acid biosynthesis 0.051304057 ACSL4 1 
hsa04926 Relaxin signaling pathway 0.053836402 COL1A2/COL4A1 2 

hsa00670 One carbon pool by folate 0.056846235 TYMS 1 
hsa04120 Ubiquitin mediated proteolysis 0.063810789 CDC20/UBE2C 2 
hsa05165 Human papillomavirus infection 0.070062641 SPP1/COL1A2/COL4A1 3 
hsa04151 PI3K-Akt signaling pathway 0.082115791 SPP1/COL1A2/COL4A1 3 
hsa01523 Antifolate resistance 0.084094909 TYMS 1 
hsa00052 Galactose metabolism 0.086777897 AKR1B10 1 

hsa00051 Fructose and mannose metabolism 0.092121296 AKR1B10 1 
hsa00040 Pentose and glucuronate interconversions 0.097434724 AKR1B10 1 
hsa04216 Ferroptosis 0.113196796 ACSL4 1 
hsa00071 Fatty acid degradation 0.118391946 ACSL4 1 
hsa05205 Proteoglycans in cancer 0.119436238 GPC3/COL1A2 2 
hsa04913 Ovarian steroidogenesis 0.138882373 AKR1C3 1 
hsa04979 Cholesterol metabolism 0.138882373 SORT1 1 
hsa00480 Glutathione metabolism 0.153949855 GPX2 1 
hsa01212 Fatty acid metabolism 0.153949855 ACSL4 1 
hsa00240 Pyrimidine metabolism 0.156436409 TYMS 1 
hsa04923 Regulation of lipolysis in adipocytes 0.156436409 FABP4 1 
hsa00590 Arachidonic acid metabolism 0.163854122 AKR1C3 1 
hsa00140 Steroid hormone biosynthesis 0.166312772 AKR1C3 1 
hsa00561 Glycerolipid metabolism 0.166312772 AKR1B10 1 
hsa04929 GnRH secretion 0.171209303 SPP1 1 
hsa04920 Adipocytokine signaling pathway 0.183330348 ACSL4 1 
hsa04622 RIG-I-like receptor signaling pathway 0.188131041 CXCL10 1 
hsa01524 Platinum drug resistance 0.192904683 TOP2A 1 
hsa04115 p53 signaling pathway 0.192904683 CCNB2 1 

hsa04623 Cytosolic DNA-sensing pathway 0.197651419 CXCL10 1 
hsa04918 Thyroid hormone synthesis 0.197651419 GPX2 1 
hsa04146 Peroxisome 0.214055207 ACSL4 1 
hsa01232 Nucleotide metabolism 0.220986576 TYMS 1 
hsa04976 Bile secretion 0.230137323 SLC51B 1 
hsa05222 Small cell lung cancer 0.236932688 COL4A1 1 
hsa04657 IL-17 signaling pathway 0.241430956 CXCL10 1 
hsa04640 Hematopoietic cell lineage 0.252565722 CD24 1 
hsa04061 Viral protein interaction with cytokine and 

cytokine receptor 
0.254773799 CXCL10 1 

hsa04668 TNF signaling pathway 0.285038062 CXCL10 1 
hsa04670 Leukocyte transendothelial migration 0.285038062 THY1 1 
hsa04722 Neurotrophin signaling pathway 0.295558471 SORT1 1 
hsa04611 Platelet activation 0.305930436 COL1A2 1 
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hsa04068 FoxO signaling pathway 0.32020561 CCNB2 1 

hsa04142 Lysosome 0.322221807 SORT1 1 
hsa04371 Apelin signaling pathway 0.336175577 SPP1 1 
hsa05418 Fluid shear stress and atherosclerosis 0.336175577 NQO1 1 
hsa01240 Biosynthesis of cofactors 0.363261704 NQO1 1 
hsa04218 Cellular senescence 0.368926462 CCNB2 1 
hsa05160 Hepatitis C 0.370803959 CXCL10 1 
hsa05225 Hepatocellular carcinoma 0.391106275 NQO1 1 
hsa05164 Influenza A 0.396533372 CXCL10 1 
hsa04062 Chemokine signaling pathway 0.433245615 CXCL10 1 
hsa05169 Epstein-Barr virus infection 0.4499659 CXCL10 1 
hsa05415 Diabetic cardiomyopathy 0.451611682 COL1A2 1 
hsa05203 Viral carcinogenesis 0.453252744 CDC20 1 
hsa05170 Human immunodeficiency virus 1 infection 0.466212876 CCNB2 1 
hsa04714 Thermogenesis 0.497337895 ACSL4 1 
hsa05171 Coronavirus disease - COVID-19 0.497337895 CXCL10 1 
hsa05132 Salmonella infection 0.522419573 S100A10 1 
hsa04060 Cytokine-cytokine receptor interaction 0.584417767 CXCL10 1 
hsa05016 Huntington disease 0.598057429 GPX2 1 
hsa05206 MicroRNAs in cancer 0.602910104 CDCA5 1 
hsa05014 Amyotrophic lateral sclerosis 0.66316943 GPX2 1 
hsa05022 Pathways of neurodegeneration - multiple diseases 0.76144915 GPX2 1 

3.3. Network analysis  
We obtained the matched network using Cytoscape’s 
STRING protein quarry plugin function.   Finding 
hub genes and then suggesting common 
pharmaceutical molecules for cirrhosis and hepatitis 
B/C were the goals of storing this network.   Finding 

shared genetic factors between cirrhosis and hepatitis 
B/C and developing effective treatments for both 
diseases were the primary aims of this study.   The 
network has 55 nodes and 93 edges, as shown in 
Figure 3.  



BIOMEDICAL RESEARCH HORIZONS 
Volume 2, Issue 1, 2025 
 

https://biomedhorizons.com                              | Zia & Javed, 2025 | Page 31 

Figure 3. A complex network of genetic and protein-protein interactions (PPIs) connects cystic fibrosis to hepatitis 
B/C.    Genes that are often upregulated are shown by the light orange nodes.    The 55 nodes and 93 edges make 

up this network. 
3.4. Hub genes identification and module analysis  
Genes in the PPIs network are highly connected to 
one another and CytoHubba was used to separate 
them.   The degree method was used to identify the 
hub genes.   The 10 genes—CDC20, CCNB2, MELK, 
AURKA, PRC1, TOP2A, CDCA5, PTTG1, TYMS 

and UBE2C—were shown to function as hub genes 
(Fig. 4).   An region with a high concentration of PPIs 
networks was, however, located using MCODE.   As 
seen in Figure 4, this clustering network yielded two 
hub genes, TOP2A and UBE2C.  

 
Figure 4. An analysis network built using principal component analyses (PPIs).   This diagram depicts the PPIs 

network as a highly interconnected web.   Through clustering, eleven hub genes were able to produce TOP2A and 
UBE.   The two hub genes are shown by the red light. 

3.5. Transcriptional factor regulatory network of 
hub genes  
A transcription factor regulatory network for hub 
genes was constructed using the NetworkAnalyst 
platform.  Eleven transcription factors and twenty-
seven interactions make up this network.   A total of 

twelve transcription factors were found to regulate 
UBE2C: two as TOP2A, four as CDC20, nine as 
TYMS, three as PTTG1, two as CCNB2 and one as 
PRC1.   There were eight TFs in the TF regulatory 
network that had a degree of connection of 2 or 
higher.    
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Figure 5. Structure of the link between hub genes and transcription factors.     Each node represents a different TF 

gene; the red one represents the hub gene.     Eight transcription factors and eight hub genes make it up. 
 
3.6. TFs-miRNA regulatory network analysis  
The TFs-miRNA regulatory Network explains the 
complex interplay between TFs, miRNAs and hub  

 
genes.   A TF-miRNA coregulatory network with 105 
nodes and 132 edges was investigated using 
NetworkAnalyst.   

Figure 6. The model shows how TF-miRNA regulates a network of shared hub genes. 
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3.7. Protein drug interaction network  
The key to successful patient treatment is a thorough 
understanding of protein drug interaction networks. 
Retrieved from DrugBank, this protein drug 
interaction network primarily associates VDR with 33 

different pharmaceutical classes. Cirrhosis and 
hepatitis B/C regulation may be significantly aided by 
vitamin D and related compounds, according to this 
network. In Figure 7, we can see the medication 
network.  

Figure 7. Drugs protein interaction network. 
Discussion  
This study highlights the shared genetic aspects of 
Hepatitis B and C infections and their progression to 
cirrhosis. By employing a network-based approach and 
analyzing gene expression data from various datasets, 
we identified 47 common upregulated genes, with ten 
key hub genes in which only one gene TOP2A 
emerged as critical player in disease progression. The 
findings emphasize the importance of a systems 
biology perspective, which enables a holistic 
understanding of the interactions among genes and 
pathways. These insights not only enhance our 
knowledge of the molecular underpinnings of 
hepatitis-related liver disease but also open avenues 
for future research focused on therapeutic 
interventions. Targeting the identified hub genes may 
offer promising strategies for mitigating the 
progression of liver disease in patients with chronic 
HBV and HCV infections. This research underscores 
the need for continued exploration of the genetic and 
molecular factors contributing to liver disease, aiming 
to improve patient outcomes and public health in the 
face of ongoing global challenges posed by viral 

hepatitis, though it is limited by reliance on in silico 
data without experimental validation, potential biases 
from combining datasets from different platforms and 
a lack of longitudinal data to confirm causality 
between gene expression and cirrhosis progression. 
Further studies are essential to validate these findings, 
particularly by investigating the role of specific genes 
in liver fibrosis models, which could elucidate their 
mechanisms and contributions to disease progression, 
ultimately translating these insights into effective 
clinical applications. 
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